Metamath Proof Explorer


Theorem eqvreldisj2

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion eqvreldisj2 EqvRelRElDisjA/R

Proof

Step Hyp Ref Expression
1 eqvreldisj1 EqvRelRxA/RyA/Rx=yxy=
2 dfeldisj5 ElDisjA/RxA/RyA/Rx=yxy=
3 1 2 sylibr EqvRelRElDisjA/R