Metamath Proof Explorer


Theorem eqvreldisj1

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 , eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 3-Dec-2024)

Ref Expression
Assertion eqvreldisj1 EqvRelRxA/RyA/Rx=yxy=

Proof

Step Hyp Ref Expression
1 simpl EqvRelRxA/RyA/REqvRelR
2 simprl EqvRelRxA/RyA/RxA/R
3 simprr EqvRelRxA/RyA/RyA/R
4 1 2 3 qsdisjALTV EqvRelRxA/RyA/Rx=yxy=
5 4 ralrimivva EqvRelRxA/RyA/Rx=yxy=