Description: Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcomember3 | |- ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcomember2 | |- ( CoMembEr A <-> ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) ) |
|
| 2 | dfcoeleqvrel | |- ( CoElEqvRel A <-> EqvRel ~ A ) |
|
| 3 | 2 | bicomi | |- ( EqvRel ~ A <-> CoElEqvRel A ) |
| 4 | dmqscoelseq | |- ( ( dom ~ A /. ~ A ) = A <-> ( U. A /. ~ A ) = A ) |
|
| 5 | 3 4 | anbi12i | |- ( ( EqvRel ~ A /\ ( dom ~ A /. ~ A ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
| 6 | 1 5 | bitri | |- ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |