Metamath Proof Explorer


Theorem eqvreldmqs

Description: Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)

Ref Expression
Assertion eqvreldmqs
|- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) )

Proof

Step Hyp Ref Expression
1 df-coeleqvrel
 |-  ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) )
2 1 bicomi
 |-  ( EqvRel ,~ ( `' _E |` A ) <-> CoElEqvRel A )
3 dmqs1cosscnvepreseq
 |-  ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A )
4 2 3 anbi12i
 |-  ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) )