Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldmqs | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coeleqvrel | |- ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) ) |
|
| 2 | 1 | bicomi | |- ( EqvRel ,~ ( `' _E |` A ) <-> CoElEqvRel A ) |
| 3 | dmqs1cosscnvepreseq | |- ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A ) |
|
| 4 | 2 3 | anbi12i | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |