Metamath Proof Explorer


Theorem eqvreldmqs

Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)

Ref Expression
Assertion eqvreldmqs EqvRelE-1AdomE-1A/E-1A=ACoElEqvRelAA/A=A

Proof

Step Hyp Ref Expression
1 df-coeleqvrel CoElEqvRelAEqvRelE-1A
2 1 bicomi EqvRelE-1ACoElEqvRelA
3 dmqs1cosscnvepreseq domE-1A/E-1A=AA/A=A
4 2 3 anbi12i EqvRelE-1AdomE-1A/E-1A=ACoElEqvRelAA/A=A