Metamath Proof Explorer


Theorem eqvreldmqs2

Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion eqvreldmqs2 EqvRelE-1AdomE-1A/E-1A=AEqvRelAA/A=A

Proof

Step Hyp Ref Expression
1 df-coels A=E-1A
2 1 eqvreleqi EqvRelAEqvRelE-1A
3 2 bicomi EqvRelE-1AEqvRelA
4 dmqs1cosscnvepreseq domE-1A/E-1A=AA/A=A
5 3 4 anbi12i EqvRelE-1AdomE-1A/E-1A=AEqvRelAA/A=A