Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldmqs2 | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( EqvRel ~ A /\ ( U. A /. ~ A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coels | |- ~ A = ,~ ( `' _E |` A ) |
|
| 2 | 1 | eqvreleqi | |- ( EqvRel ~ A <-> EqvRel ,~ ( `' _E |` A ) ) |
| 3 | 2 | bicomi | |- ( EqvRel ,~ ( `' _E |` A ) <-> EqvRel ~ A ) |
| 4 | dmqs1cosscnvepreseq | |- ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A ) |
|
| 5 | 3 4 | anbi12i | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( EqvRel ~ A /\ ( U. A /. ~ A ) = A ) ) |