Description: Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreldmqs | ⊢ ( ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ∧ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) | |
2 | 1 | bicomi | ⊢ ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ↔ CoElEqvRel 𝐴 ) |
3 | dmqs1cosscnvepreseq | ⊢ ( ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) | |
4 | 2 3 | anbi12i | ⊢ ( ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ∧ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |