Metamath Proof Explorer


Theorem eqvreldmqs

Description: Two ways to express membership equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021) (Revised by Peter Mazsa, 17-Jul-2023)

Ref Expression
Assertion eqvreldmqs ( ( EqvRel ≀ ( E ↾ 𝐴 ) ∧ ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
2 1 bicomi ( EqvRel ≀ ( E ↾ 𝐴 ) ↔ CoElEqvRel 𝐴 )
3 dmqs1cosscnvepreseq ( ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )
4 2 3 anbi12i ( ( EqvRel ≀ ( E ↾ 𝐴 ) ∧ ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )