Metamath Proof Explorer


Theorem erALTVeq1i

Description: Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Hypothesis erALTVeq1i.1 R = S
Assertion erALTVeq1i R ErALTV A S ErALTV A

Proof

Step Hyp Ref Expression
1 erALTVeq1i.1 R = S
2 erALTVeq1 R = S R ErALTV A S ErALTV A
3 1 2 ax-mp R ErALTV A S ErALTV A