Metamath Proof Explorer


Theorem erALTVeq1d

Description: Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Hypothesis erALTVeq1d.1 φ R = S
Assertion erALTVeq1d φ R ErALTV A S ErALTV A

Proof

Step Hyp Ref Expression
1 erALTVeq1d.1 φ R = S
2 erALTVeq1 R = S R ErALTV A S ErALTV A
3 1 2 syl φ R ErALTV A S ErALTV A