Metamath Proof Explorer


Theorem erALTVeq1d

Description: Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Hypothesis erALTVeq1d.1
|- ( ph -> R = S )
Assertion erALTVeq1d
|- ( ph -> ( R ErALTV A <-> S ErALTV A ) )

Proof

Step Hyp Ref Expression
1 erALTVeq1d.1
 |-  ( ph -> R = S )
2 erALTVeq1
 |-  ( R = S -> ( R ErALTV A <-> S ErALTV A ) )
3 1 2 syl
 |-  ( ph -> ( R ErALTV A <-> S ErALTV A ) )