Metamath Proof Explorer


Theorem erALTVeq1d

Description: Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Hypothesis erALTVeq1d.1 ( 𝜑𝑅 = 𝑆 )
Assertion erALTVeq1d ( 𝜑 → ( 𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴 ) )

Proof

Step Hyp Ref Expression
1 erALTVeq1d.1 ( 𝜑𝑅 = 𝑆 )
2 erALTVeq1 ( 𝑅 = 𝑆 → ( 𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴 ) )