Metamath Proof Explorer
Description: Equality theorem for equivalence relation on domain quotient, deduction
version. (Contributed by Peter Mazsa, 25-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
erALTVeq1d.1 |
⊢ ( 𝜑 → 𝑅 = 𝑆 ) |
|
Assertion |
erALTVeq1d |
⊢ ( 𝜑 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
erALTVeq1d.1 |
⊢ ( 𝜑 → 𝑅 = 𝑆 ) |
2 |
|
erALTVeq1 |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) |