Metamath Proof Explorer


Theorem erov2

Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses eropr2.1 J=A/˙
eropr2.2 ˙=xyz|pAqAx=p˙y=q˙z=p+˙q˙
eropr2.3 φ˙X
eropr2.4 φ˙ErU
eropr2.5 φAU
eropr2.6 φ+˙:A×AA
eropr2.7 φrAsAtAuAr˙st˙ur+˙t˙s+˙u
Assertion erov2 φPAQAP˙˙Q˙=P+˙Q˙

Proof

Step Hyp Ref Expression
1 eropr2.1 J=A/˙
2 eropr2.2 ˙=xyz|pAqAx=p˙y=q˙z=p+˙q˙
3 eropr2.3 φ˙X
4 eropr2.4 φ˙ErU
5 eropr2.5 φAU
6 eropr2.6 φ+˙:A×AA
7 eropr2.7 φrAsAtAuAr˙st˙ur+˙t˙s+˙u
8 1 1 3 4 4 4 5 5 5 6 7 2 3 3 erov φPAQAP˙˙Q˙=P+˙Q˙