Metamath Proof Explorer


Theorem erthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses erthi.1 φRErX
erthi.2 φARB
Assertion erthi φAR=BR

Proof

Step Hyp Ref Expression
1 erthi.1 φRErX
2 erthi.2 φARB
3 1 2 ercl φAX
4 1 3 erth φARBAR=BR
5 2 4 mpbid φAR=BR