Metamath Proof Explorer


Theorem erdisj

Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion erdisj RErXAR=BRARBR=

Proof

Step Hyp Ref Expression
1 neq0 ¬ARBR=xxARBR
2 simpl RErXxARBRRErX
3 elinel1 xARBRxAR
4 3 adantl RErXxARBRxAR
5 vex xV
6 ecexr xARAV
7 4 6 syl RErXxARBRAV
8 elecg xVAVxARARx
9 5 7 8 sylancr RErXxARBRxARARx
10 4 9 mpbid RErXxARBRARx
11 elinel2 xARBRxBR
12 11 adantl RErXxARBRxBR
13 ecexr xBRBV
14 12 13 syl RErXxARBRBV
15 elecg xVBVxBRBRx
16 5 14 15 sylancr RErXxARBRxBRBRx
17 12 16 mpbid RErXxARBRBRx
18 2 10 17 ertr4d RErXxARBRARB
19 2 18 erthi RErXxARBRAR=BR
20 19 ex RErXxARBRAR=BR
21 20 exlimdv RErXxxARBRAR=BR
22 1 21 biimtrid RErX¬ARBR=AR=BR
23 22 orrd RErXARBR=AR=BR
24 23 orcomd RErXAR=BRARBR=