Metamath Proof Explorer


Theorem et-equeucl

Description: Alternative proof that equality is left-Euclidean, using ax7 directly instead of utility theorems; done for practice. (Contributed by Ender Ting, 21-Dec-2024)

Ref Expression
Assertion et-equeucl x = z y = z x = y

Proof

Step Hyp Ref Expression
1 equid x = x
2 ax7 x = z x = x z = x
3 2 com12 x = x x = z z = x
4 1 3 ax-mp x = z z = x
5 equid y = y
6 ax7 y = z y = y z = y
7 6 com12 y = y y = z z = y
8 5 7 ax-mp y = z z = y
9 ax7 z = x z = y x = y
10 9 com12 z = y z = x x = y
11 8 10 syl y = z z = x x = y
12 11 com12 z = x y = z x = y
13 4 12 syl x = z y = z x = y