Metamath Proof Explorer


Theorem et-equeucl

Description: Alternative proof that equality is left-Euclidean, using ax7 directly instead of utility theorems; done for practice. (Contributed by Ender Ting, 21-Dec-2024)

Ref Expression
Assertion et-equeucl x=zy=zx=y

Proof

Step Hyp Ref Expression
1 equid x=x
2 ax7 x=zx=xz=x
3 2 com12 x=xx=zz=x
4 1 3 ax-mp x=zz=x
5 equid y=y
6 ax7 y=zy=yz=y
7 6 com12 y=yy=zz=y
8 5 7 ax-mp y=zz=y
9 ax7 z=xz=yx=y
10 9 com12 z=yz=xx=y
11 8 10 syl y=zz=xx=y
12 11 com12 z=xy=zx=y
13 4 12 syl x=zy=zx=y