Metamath Proof Explorer


Theorem et-sqrtnegnre

Description: The square root of a negative number is not a real number. (Contributed by Ender Ting, 5-Jan-2025)

Ref Expression
Assertion et-sqrtnegnre A A < 0 ¬ A

Proof

Step Hyp Ref Expression
1 simpr A < 0 A A
2 id A A
3 0red A 0
4 2 3 ltnled A A < 0 ¬ 0 A
5 4 biimpd A A < 0 ¬ 0 A
6 5 impcom A < 0 A ¬ 0 A
7 1 6 jcnd A < 0 A ¬ A 0 A
8 7 ancoms A A < 0 ¬ A 0 A
9 recn A A
10 9 sqsqrtd A A 2 = A
11 sqge0 A 0 A 2
12 breq2 A 2 = A 0 A 2 0 A
13 12 biimpd A 2 = A 0 A 2 0 A
14 10 11 13 syl2imc A A 0 A
15 8 14 nsyl A A < 0 ¬ A