| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  <  0  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | 0red | ⊢ ( 𝐴  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 4 | 2 3 | ltnled | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  ↔  ¬  0  ≤  𝐴 ) ) | 
						
							| 5 | 4 | biimpd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  →  ¬  0  ≤  𝐴 ) ) | 
						
							| 6 | 5 | impcom | ⊢ ( ( 𝐴  <  0  ∧  𝐴  ∈  ℝ )  →  ¬  0  ≤  𝐴 ) | 
						
							| 7 | 1 6 | jcnd | ⊢ ( ( 𝐴  <  0  ∧  𝐴  ∈  ℝ )  →  ¬  ( 𝐴  ∈  ℝ  →  0  ≤  𝐴 ) ) | 
						
							| 8 | 7 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ¬  ( 𝐴  ∈  ℝ  →  0  ≤  𝐴 ) ) | 
						
							| 9 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 10 | 9 | sqsqrtd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 ) | 
						
							| 11 |  | sqge0 | ⊢ ( ( √ ‘ 𝐴 )  ∈  ℝ  →  0  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 12 |  | breq2 | ⊢ ( ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴  →  ( 0  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 )  ↔  0  ≤  𝐴 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴  →  ( 0  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 )  →  0  ≤  𝐴 ) ) | 
						
							| 14 | 10 11 13 | syl2imc | ⊢ ( ( √ ‘ 𝐴 )  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  0  ≤  𝐴 ) ) | 
						
							| 15 | 8 14 | nsyl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ¬  ( √ ‘ 𝐴 )  ∈  ℝ ) |