| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 < 0 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 2 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 3 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 4 |
2 3
|
ltnled |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
| 5 |
4
|
biimpd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 → ¬ 0 ≤ 𝐴 ) ) |
| 6 |
5
|
impcom |
⊢ ( ( 𝐴 < 0 ∧ 𝐴 ∈ ℝ ) → ¬ 0 ≤ 𝐴 ) |
| 7 |
1 6
|
jcnd |
⊢ ( ( 𝐴 < 0 ∧ 𝐴 ∈ ℝ ) → ¬ ( 𝐴 ∈ ℝ → 0 ≤ 𝐴 ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ¬ ( 𝐴 ∈ ℝ → 0 ≤ 𝐴 ) ) |
| 9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 10 |
9
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℝ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 11 |
|
sqge0 |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → 0 ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
| 12 |
|
breq2 |
⊢ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 → ( 0 ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ↔ 0 ≤ 𝐴 ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 → ( 0 ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) → 0 ≤ 𝐴 ) ) |
| 14 |
10 11 13
|
syl2imc |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( 𝐴 ∈ ℝ → 0 ≤ 𝐴 ) ) |
| 15 |
8 14
|
nsyl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ¬ ( √ ‘ 𝐴 ) ∈ ℝ ) |