| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ormklocald.1 |
⊢ ( 𝜑 → 𝑅 Or 𝑆 ) |
| 2 |
|
ormklocald.2 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ) |
| 3 |
|
ormklocald.3 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |
| 4 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 5 |
4
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑘 + 1 ) |
| 6 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ℤ ) |
| 7 |
6
|
zred |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ℝ ) |
| 8 |
7
|
ltp1d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 < ( 𝑘 + 1 ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 ↔ 𝑘 < ( 𝑘 + 1 ) ) ) |
| 10 |
8 9
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑘 < 𝑡 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑘 < 𝑡 ) ) |
| 12 |
|
1z |
⊢ 1 ∈ ℤ |
| 13 |
|
fzoaddel |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 1 ∈ ℤ ) → ( 𝑘 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) ) |
| 14 |
12 13
|
mpan2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) ) |
| 15 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 16 |
15
|
oveq1i |
⊢ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) = ( 1 ..^ ( 𝑇 + 1 ) ) |
| 17 |
14 16
|
eleqtrdi |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) |
| 18 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) |
| 19 |
17 18
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) |
| 21 |
3
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |
| 22 |
21
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) ) |
| 24 |
20 23
|
syld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) ) |
| 25 |
11 24
|
mpdd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑡 ) = ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 27 |
26
|
breq2d |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
| 28 |
25 27
|
mpbidi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
| 29 |
28
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( ∃ 𝑡 𝑡 = ( 𝑘 + 1 ) → ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 |
5 29
|
mpi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 31 |
|
ax5e |
⊢ ( ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |