| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ormklocald.1 |
|- ( ph -> R Or S ) |
| 2 |
|
ormklocald.2 |
|- ( ph -> A. k e. ( 0 ..^ ( T + 1 ) ) ( B ` k ) e. S ) |
| 3 |
|
ormklocald.3 |
|- ( ph -> A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) R ( B ` t ) ) ) |
| 4 |
|
ovex |
|- ( k + 1 ) e. _V |
| 5 |
4
|
isseti |
|- E. t t = ( k + 1 ) |
| 6 |
|
elfzoelz |
|- ( k e. ( 0 ..^ T ) -> k e. ZZ ) |
| 7 |
6
|
zred |
|- ( k e. ( 0 ..^ T ) -> k e. RR ) |
| 8 |
7
|
ltp1d |
|- ( k e. ( 0 ..^ T ) -> k < ( k + 1 ) ) |
| 9 |
|
breq2 |
|- ( t = ( k + 1 ) -> ( k < t <-> k < ( k + 1 ) ) ) |
| 10 |
8 9
|
syl5ibrcom |
|- ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> k < t ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t = ( k + 1 ) -> k < t ) ) |
| 12 |
|
1z |
|- 1 e. ZZ |
| 13 |
|
fzoaddel |
|- ( ( k e. ( 0 ..^ T ) /\ 1 e. ZZ ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) |
| 14 |
12 13
|
mpan2 |
|- ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) |
| 15 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 16 |
15
|
oveq1i |
|- ( ( 0 + 1 ) ..^ ( T + 1 ) ) = ( 1 ..^ ( T + 1 ) ) |
| 17 |
14 16
|
eleqtrdi |
|- ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) |
| 18 |
|
eleq1 |
|- ( t = ( k + 1 ) -> ( t e. ( 1 ..^ ( T + 1 ) ) <-> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) ) |
| 19 |
17 18
|
syl5ibrcom |
|- ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> t e. ( 1 ..^ ( T + 1 ) ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t = ( k + 1 ) -> t e. ( 1 ..^ ( T + 1 ) ) ) ) |
| 21 |
3
|
r19.21bi |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) R ( B ` t ) ) ) |
| 22 |
21
|
r19.21bi |
|- ( ( ( ph /\ k e. ( 0 ..^ T ) ) /\ t e. ( 1 ..^ ( T + 1 ) ) ) -> ( k < t -> ( B ` k ) R ( B ` t ) ) ) |
| 23 |
22
|
ex |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) R ( B ` t ) ) ) ) |
| 24 |
20 23
|
syld |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) R ( B ` t ) ) ) ) |
| 25 |
11 24
|
mpdd |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t = ( k + 1 ) -> ( B ` k ) R ( B ` t ) ) ) |
| 26 |
|
fveq2 |
|- ( t = ( k + 1 ) -> ( B ` t ) = ( B ` ( k + 1 ) ) ) |
| 27 |
26
|
breq2d |
|- ( t = ( k + 1 ) -> ( ( B ` k ) R ( B ` t ) <-> ( B ` k ) R ( B ` ( k + 1 ) ) ) ) |
| 28 |
25 27
|
mpbidi |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( t = ( k + 1 ) -> ( B ` k ) R ( B ` ( k + 1 ) ) ) ) |
| 29 |
28
|
eximdv |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( E. t t = ( k + 1 ) -> E. t ( B ` k ) R ( B ` ( k + 1 ) ) ) ) |
| 30 |
5 29
|
mpi |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> E. t ( B ` k ) R ( B ` ( k + 1 ) ) ) |
| 31 |
|
ax5e |
|- ( E. t ( B ` k ) R ( B ` ( k + 1 ) ) -> ( B ` k ) R ( B ` ( k + 1 ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ k e. ( 0 ..^ T ) ) -> ( B ` k ) R ( B ` ( k + 1 ) ) ) |
| 33 |
32
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ..^ T ) ( B ` k ) R ( B ` ( k + 1 ) ) ) |