| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ormkglobd.1 |
⊢ ( 𝜑 → 𝑅 Or 𝑆 ) |
| 2 |
|
ormkglobd.2 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ) |
| 3 |
|
ormkglobd.3 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 4 |
|
2a1 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → 𝜑 ) ) ) |
| 5 |
4
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) → ( 𝑘 < 𝑡 → 𝜑 ) ) |
| 6 |
|
2a1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) → ( 𝑘 < 𝑡 → 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) |
| 9 |
5 8
|
jcad |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) → ( 𝑘 < 𝑡 → ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) ) |
| 10 |
|
elfzoelz |
⊢ ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → 𝑡 ∈ ℤ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑡 ∈ ℤ ) |
| 12 |
11
|
a1d |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → 𝑡 ∈ ℤ ) ) |
| 13 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ℤ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 15 |
|
zltp1le |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑘 < 𝑡 ↔ ( 𝑘 + 1 ) ≤ 𝑡 ) ) |
| 16 |
14 11 15
|
syl2anc |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 ↔ ( 𝑘 + 1 ) ≤ 𝑡 ) ) |
| 17 |
16
|
biimpd |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → ( 𝑘 + 1 ) ≤ 𝑡 ) ) |
| 18 |
11
|
zred |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
| 19 |
|
elfzoel2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑇 ∈ ℤ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑇 ∈ ℤ ) |
| 21 |
20
|
zred |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑇 ∈ ℝ ) |
| 22 |
|
1red |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 1 ∈ ℝ ) |
| 23 |
18 21 22
|
3jca |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 24 |
|
elfzop1le2 |
⊢ ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑡 + 1 ) ≤ ( 𝑇 + 1 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑡 + 1 ) ≤ ( 𝑇 + 1 ) ) |
| 26 |
|
leadd1 |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑡 ≤ 𝑇 ↔ ( 𝑡 + 1 ) ≤ ( 𝑇 + 1 ) ) ) |
| 27 |
26
|
biimprd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑡 + 1 ) ≤ ( 𝑇 + 1 ) → 𝑡 ≤ 𝑇 ) ) |
| 28 |
23 25 27
|
sylc |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → 𝑡 ≤ 𝑇 ) |
| 29 |
28
|
a1d |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → 𝑡 ≤ 𝑇 ) ) |
| 30 |
12 17 29
|
3jcad |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) → ( 𝑘 < 𝑡 → ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) |
| 32 |
9 31
|
jcad |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) → ( 𝑘 < 𝑡 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 35 |
34
|
breq2d |
⊢ ( 𝑎 = ( 𝑘 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑏 ) ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
| 39 |
38
|
breq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑎 = 𝑡 → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑡 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |
| 42 |
3
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 43 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝜑 ) |
| 44 |
43 1
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑅 Or 𝑆 ) |
| 45 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ( 0 ... 𝑇 ) ) |
| 46 |
|
fzval3 |
⊢ ( 𝑇 ∈ ℤ → ( 0 ... 𝑇 ) = ( 0 ..^ ( 𝑇 + 1 ) ) ) |
| 47 |
19 46
|
syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 0 ... 𝑇 ) = ( 0 ..^ ( 𝑇 + 1 ) ) ) |
| 48 |
45 47
|
eleqtrd |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) |
| 49 |
2
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ) |
| 50 |
48 49
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ) |
| 52 |
|
simp21 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ℤ ) |
| 53 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 0 ∈ ℝ ) |
| 54 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑘 ∈ ( 0 ..^ 𝑇 ) ) |
| 55 |
54 13
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑘 ∈ ℤ ) |
| 56 |
55
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑘 ∈ ℝ ) |
| 57 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 1 ∈ ℝ ) |
| 58 |
56 57
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 59 |
52
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ℝ ) |
| 60 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 0 ≤ 𝑘 ) |
| 61 |
54 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ 𝑘 ) |
| 62 |
|
0le1 |
⊢ 0 ≤ 1 |
| 63 |
62
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ 1 ) |
| 64 |
56 57 61 63
|
addge0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ ( 𝑘 + 1 ) ) |
| 65 |
|
simp22 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑘 + 1 ) ≤ 𝑏 ) |
| 66 |
53 58 59 64 65
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ 𝑏 ) |
| 67 |
|
elnn0z |
⊢ ( 𝑏 ∈ ℕ0 ↔ ( 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ) |
| 68 |
52 66 67
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ℕ0 ) |
| 69 |
54 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑇 ∈ ℤ ) |
| 70 |
69
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑇 + 1 ) ∈ ℤ ) |
| 71 |
69
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑇 ∈ ℝ ) |
| 72 |
71 57
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑇 + 1 ) ∈ ℝ ) |
| 73 |
|
simp23 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 < 𝑇 ) |
| 74 |
71
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑇 < ( 𝑇 + 1 ) ) |
| 75 |
59 71 72 73 74
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 < ( 𝑇 + 1 ) ) |
| 76 |
|
elfzo0z |
⊢ ( 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ↔ ( 𝑏 ∈ ℕ0 ∧ ( 𝑇 + 1 ) ∈ ℤ ∧ 𝑏 < ( 𝑇 + 1 ) ) ) |
| 77 |
68 70 75 76
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) |
| 78 |
|
eleq1w |
⊢ ( 𝑘 = 𝑏 → ( 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ↔ 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ) |
| 79 |
78
|
anbi2d |
⊢ ( 𝑘 = 𝑏 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ↔ ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑘 = 𝑏 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑏 ) ) |
| 81 |
80
|
eleq1d |
⊢ ( 𝑘 = 𝑏 → ( ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐵 ‘ 𝑏 ) ∈ 𝑆 ) ) |
| 82 |
49 81
|
imbitrid |
⊢ ( 𝑘 = 𝑏 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ 𝑏 ) ∈ 𝑆 ) ) |
| 83 |
79 82
|
sylbird |
⊢ ( 𝑘 = 𝑏 → ( ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ 𝑏 ) ∈ 𝑆 ) ) |
| 84 |
|
ax6ev |
⊢ ∃ 𝑘 𝑘 = 𝑏 |
| 85 |
83 84
|
exlimiiv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ 𝑏 ) ∈ 𝑆 ) |
| 86 |
43 77 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑏 ) ∈ 𝑆 ) |
| 87 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 88 |
87
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 1 ∈ ℕ0 ) |
| 89 |
68 88
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑏 + 1 ) ∈ ℕ0 ) |
| 90 |
59 71 57 73
|
ltadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑏 + 1 ) < ( 𝑇 + 1 ) ) |
| 91 |
|
elfzo0z |
⊢ ( ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ↔ ( ( 𝑏 + 1 ) ∈ ℕ0 ∧ ( 𝑇 + 1 ) ∈ ℤ ∧ ( 𝑏 + 1 ) < ( 𝑇 + 1 ) ) ) |
| 92 |
89 70 90 91
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) |
| 93 |
|
ovex |
⊢ ( 𝑏 + 1 ) ∈ V |
| 94 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ↔ ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ) |
| 95 |
94
|
anbi2d |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ↔ ( 𝜑 ∧ ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) ) ) |
| 96 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
| 97 |
96
|
eleq1d |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) |
| 98 |
49 97
|
imbitrid |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) |
| 99 |
95 98
|
sylbird |
⊢ ( 𝑘 = ( 𝑏 + 1 ) → ( ( 𝜑 ∧ ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) |
| 100 |
93 99
|
vtocle |
⊢ ( ( 𝜑 ∧ ( 𝑏 + 1 ) ∈ ( 0 ..^ ( 𝑇 + 1 ) ) ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ 𝑆 ) |
| 101 |
43 92 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ 𝑆 ) |
| 102 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) |
| 103 |
|
elfzo0z |
⊢ ( 𝑏 ∈ ( 0 ..^ 𝑇 ) ↔ ( 𝑏 ∈ ℕ0 ∧ 𝑇 ∈ ℤ ∧ 𝑏 < 𝑇 ) ) |
| 104 |
68 69 73 103
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ( 0 ..^ 𝑇 ) ) |
| 105 |
|
eleq1w |
⊢ ( 𝑏 = 𝑘 → ( 𝑏 ∈ ( 0 ..^ 𝑇 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) |
| 106 |
105
|
anbi2d |
⊢ ( 𝑏 = 𝑘 → ( ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ 𝑇 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ) ) |
| 107 |
|
fveq2 |
⊢ ( 𝑏 = 𝑘 → ( 𝐵 ‘ 𝑏 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 108 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑘 → ( 𝐵 ‘ ( 𝑏 + 1 ) ) = ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
| 109 |
107 108
|
breq12d |
⊢ ( 𝑏 = 𝑘 → ( ( 𝐵 ‘ 𝑏 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ↔ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
| 110 |
42 109
|
imbitrrid |
⊢ ( 𝑏 = 𝑘 → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑏 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
| 111 |
106 110
|
sylbid |
⊢ ( 𝑏 = 𝑘 → ( ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑏 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
| 112 |
|
ax6evr |
⊢ ∃ 𝑘 𝑏 = 𝑘 |
| 113 |
111 112
|
exlimiiv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝐵 ‘ 𝑏 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
| 114 |
43 104 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑏 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
| 115 |
44 51 86 101 102 114
|
sotrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
| 116 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → 𝑘 ∈ ℤ ) |
| 117 |
116
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 118 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → 𝑇 ∈ ℤ ) |
| 119 |
|
elfzop1le2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ≤ 𝑇 ) |
| 120 |
119
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) → ( 𝑘 + 1 ) ≤ 𝑇 ) |
| 121 |
35 37 39 41 42 115 117 118 120
|
fzindd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑇 ) ) ∧ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) |
| 122 |
33 121
|
syl8 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) ) |
| 123 |
122
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) 𝑅 ( 𝐵 ‘ 𝑡 ) ) ) |