Metamath Proof Explorer
Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021)
|
|
Ref |
Expression |
|
Hypotheses |
sotrd.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
|
|
sotrd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
|
sotrd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
|
|
sotrd.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) |
|
|
sotrd.5 |
⊢ ( 𝜑 → 𝑋 𝑅 𝑌 ) |
|
|
sotrd.6 |
⊢ ( 𝜑 → 𝑌 𝑅 𝑍 ) |
|
Assertion |
sotrd |
⊢ ( 𝜑 → 𝑋 𝑅 𝑍 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sotrd.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 2 |
|
sotrd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 3 |
|
sotrd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 4 |
|
sotrd.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) |
| 5 |
|
sotrd.5 |
⊢ ( 𝜑 → 𝑋 𝑅 𝑌 ) |
| 6 |
|
sotrd.6 |
⊢ ( 𝜑 → 𝑌 𝑅 𝑍 ) |
| 7 |
|
sotr |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑋 𝑅 𝑌 ∧ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) |
| 8 |
1 2 3 4 7
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 𝑅 𝑌 ∧ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) |
| 9 |
5 6 8
|
mp2and |
⊢ ( 𝜑 → 𝑋 𝑅 𝑍 ) |