Metamath Proof Explorer
Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021)
|
|
Ref |
Expression |
|
Hypotheses |
sotrd.1 |
|
|
|
sotrd.2 |
|
|
|
sotrd.3 |
|
|
|
sotrd.4 |
|
|
|
sotrd.5 |
|
|
|
sotrd.6 |
|
|
Assertion |
sotrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sotrd.1 |
|
2 |
|
sotrd.2 |
|
3 |
|
sotrd.3 |
|
4 |
|
sotrd.4 |
|
5 |
|
sotrd.5 |
|
6 |
|
sotrd.6 |
|
7 |
|
sotr |
|
8 |
1 2 3 4 7
|
syl13anc |
|
9 |
5 6 8
|
mp2and |
|