Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sotrd.1 | |- ( ph -> R Or A ) |
|
sotrd.2 | |- ( ph -> X e. A ) |
||
sotrd.3 | |- ( ph -> Y e. A ) |
||
sotrd.4 | |- ( ph -> Z e. A ) |
||
sotrd.5 | |- ( ph -> X R Y ) |
||
sotrd.6 | |- ( ph -> Y R Z ) |
||
Assertion | sotrd | |- ( ph -> X R Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrd.1 | |- ( ph -> R Or A ) |
|
2 | sotrd.2 | |- ( ph -> X e. A ) |
|
3 | sotrd.3 | |- ( ph -> Y e. A ) |
|
4 | sotrd.4 | |- ( ph -> Z e. A ) |
|
5 | sotrd.5 | |- ( ph -> X R Y ) |
|
6 | sotrd.6 | |- ( ph -> Y R Z ) |
|
7 | sotr | |- ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( X R Y /\ Y R Z ) -> X R Z ) ) |
|
8 | 1 2 3 4 7 | syl13anc | |- ( ph -> ( ( X R Y /\ Y R Z ) -> X R Z ) ) |
9 | 5 6 8 | mp2and | |- ( ph -> X R Z ) |