Metamath Proof Explorer


Theorem sotrd

Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Hypotheses sotrd.1
|- ( ph -> R Or A )
sotrd.2
|- ( ph -> X e. A )
sotrd.3
|- ( ph -> Y e. A )
sotrd.4
|- ( ph -> Z e. A )
sotrd.5
|- ( ph -> X R Y )
sotrd.6
|- ( ph -> Y R Z )
Assertion sotrd
|- ( ph -> X R Z )

Proof

Step Hyp Ref Expression
1 sotrd.1
 |-  ( ph -> R Or A )
2 sotrd.2
 |-  ( ph -> X e. A )
3 sotrd.3
 |-  ( ph -> Y e. A )
4 sotrd.4
 |-  ( ph -> Z e. A )
5 sotrd.5
 |-  ( ph -> X R Y )
6 sotrd.6
 |-  ( ph -> Y R Z )
7 sotr
 |-  ( ( R Or A /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( ( X R Y /\ Y R Z ) -> X R Z ) )
8 1 2 3 4 7 syl13anc
 |-  ( ph -> ( ( X R Y /\ Y R Z ) -> X R Z ) )
9 5 6 8 mp2and
 |-  ( ph -> X R Z )