| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natlocalincr.1 | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ∀ 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑘  +  1 )  ∈  V | 
						
							| 3 | 2 | isseti | ⊢ ∃ 𝑡 𝑡  =  ( 𝑘  +  1 ) | 
						
							| 4 |  | rsp | ⊢ ( ∀ 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) )  →  ( 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ∀ 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) | 
						
							| 6 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 7 |  | fzoaddel | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  1  ∈  ℤ )  →  ( 𝑘  +  1 )  ∈  ( ( 0  +  1 ) ..^ ( 𝑇  +  1 ) ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑘  +  1 )  ∈  ( ( 0  +  1 ) ..^ ( 𝑇  +  1 ) ) ) | 
						
							| 9 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 10 | 9 | oveq1i | ⊢ ( ( 0  +  1 ) ..^ ( 𝑇  +  1 ) )  =  ( 1 ..^ ( 𝑇  +  1 ) ) | 
						
							| 11 | 8 10 | eleqtrdi | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑘  +  1 )  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) )  ↔  ( 𝑘  +  1 )  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ) ) | 
						
							| 13 | 11 12 | syl5ibrcom | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) ) ) ) | 
						
							| 14 | 13 | imim1d | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( ( 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) ) | 
						
							| 15 | 14 | ralimia | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  ∈  ( 1 ..^ ( 𝑇  +  1 ) )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) | 
						
							| 16 | 1 5 15 | mp2b | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) | 
						
							| 17 |  | elfzoelz | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  𝑘  ∈  ℤ ) | 
						
							| 18 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 19 |  | ltp1 | ⊢ ( 𝑘  ∈  ℝ  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  ↔  𝑘  <  ( 𝑘  +  1 ) ) ) | 
						
							| 22 | 20 21 | syl5ibrcom | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  𝑘  <  𝑡 ) ) | 
						
							| 23 |  | ax-2 | ⊢ ( ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) )  →  ( ( 𝑡  =  ( 𝑘  +  1 )  →  𝑘  <  𝑡 )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) | 
						
							| 24 | 22 23 | syl5com | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) ) | 
						
							| 25 | 24 | ralimia | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝑘  <  𝑡  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑡 )  =  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑡  =  ( 𝑘  +  1 )  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 28 | 27 | biimpd | ⊢ ( 𝑡  =  ( 𝑘  +  1 )  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 29 | 28 | a2i | ⊢ ( ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 30 | 29 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) )  →  ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 31 | 16 25 30 | mp2b | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 32 | 31 | rspec | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑡  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 33 | 32 | eximdv | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( ∃ 𝑡 𝑡  =  ( 𝑘  +  1 )  →  ∃ 𝑡 ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 34 | 3 33 | mpi | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ∃ 𝑡 ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 35 |  | ax5e | ⊢ ( ∃ 𝑡 ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 37 | 36 | rgen | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) |