Step |
Hyp |
Ref |
Expression |
1 |
|
natlocalincr.1 |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) |
2 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
3 |
2
|
isseti |
⊢ ∃ 𝑡 𝑡 = ( 𝑘 + 1 ) |
4 |
|
rsp |
⊢ ( ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) → ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ∀ 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
fzoaddel |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 1 ∈ ℤ ) → ( 𝑘 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ∈ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) ) |
9 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
10 |
9
|
oveq1i |
⊢ ( ( 0 + 1 ) ..^ ( 𝑇 + 1 ) ) = ( 1 ..^ ( 𝑇 + 1 ) ) |
11 |
8 10
|
eleqtrdi |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) |
13 |
11 12
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) ) ) |
14 |
13
|
imim1d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) ) |
15 |
14
|
ralimia |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 ∈ ( 1 ..^ ( 𝑇 + 1 ) ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) |
16 |
1 5 15
|
mp2b |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) |
17 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ℤ ) |
18 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
19 |
|
ltp1 |
⊢ ( 𝑘 ∈ ℝ → 𝑘 < ( 𝑘 + 1 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 < ( 𝑘 + 1 ) ) |
21 |
|
breq2 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 ↔ 𝑘 < ( 𝑘 + 1 ) ) ) |
22 |
20 21
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 = ( 𝑘 + 1 ) → 𝑘 < 𝑡 ) ) |
23 |
|
ax-2 |
⊢ ( ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) → ( ( 𝑡 = ( 𝑘 + 1 ) → 𝑘 < 𝑡 ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) |
24 |
22 23
|
syl5com |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) ) |
25 |
24
|
ralimia |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝑘 < 𝑡 → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑡 ) = ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
28 |
27
|
biimpd |
⊢ ( 𝑡 = ( 𝑘 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
29 |
28
|
a2i |
⊢ ( ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
30 |
29
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
31 |
16 25 30
|
mp2b |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
32 |
31
|
rspec |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
33 |
32
|
eximdv |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( ∃ 𝑡 𝑡 = ( 𝑘 + 1 ) → ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
34 |
3 33
|
mpi |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
35 |
|
ax5e |
⊢ ( ∃ 𝑡 ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
37 |
36
|
rgen |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) |