Metamath Proof Explorer


Theorem natlocalincr

Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024)

Ref Expression
Hypothesis natlocalincr.1 k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t
Assertion natlocalincr k 0 ..^ T B k < B k + 1

Proof

Step Hyp Ref Expression
1 natlocalincr.1 k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t
2 ovex k + 1 V
3 2 isseti t t = k + 1
4 rsp t 1 ..^ T + 1 k < t B k < B t t 1 ..^ T + 1 k < t B k < B t
5 4 ralimi k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t
6 1z 1
7 fzoaddel k 0 ..^ T 1 k + 1 0 + 1 ..^ T + 1
8 6 7 mpan2 k 0 ..^ T k + 1 0 + 1 ..^ T + 1
9 0p1e1 0 + 1 = 1
10 9 oveq1i 0 + 1 ..^ T + 1 = 1 ..^ T + 1
11 8 10 eleqtrdi k 0 ..^ T k + 1 1 ..^ T + 1
12 eleq1 t = k + 1 t 1 ..^ T + 1 k + 1 1 ..^ T + 1
13 11 12 syl5ibrcom k 0 ..^ T t = k + 1 t 1 ..^ T + 1
14 13 imim1d k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t t = k + 1 k < t B k < B t
15 14 ralimia k 0 ..^ T t 1 ..^ T + 1 k < t B k < B t k 0 ..^ T t = k + 1 k < t B k < B t
16 1 5 15 mp2b k 0 ..^ T t = k + 1 k < t B k < B t
17 elfzoelz k 0 ..^ T k
18 zre k k
19 ltp1 k k < k + 1
20 17 18 19 3syl k 0 ..^ T k < k + 1
21 breq2 t = k + 1 k < t k < k + 1
22 20 21 syl5ibrcom k 0 ..^ T t = k + 1 k < t
23 ax-2 t = k + 1 k < t B k < B t t = k + 1 k < t t = k + 1 B k < B t
24 22 23 syl5com k 0 ..^ T t = k + 1 k < t B k < B t t = k + 1 B k < B t
25 24 ralimia k 0 ..^ T t = k + 1 k < t B k < B t k 0 ..^ T t = k + 1 B k < B t
26 fveq2 t = k + 1 B t = B k + 1
27 26 breq2d t = k + 1 B k < B t B k < B k + 1
28 27 biimpd t = k + 1 B k < B t B k < B k + 1
29 28 a2i t = k + 1 B k < B t t = k + 1 B k < B k + 1
30 29 ralimi k 0 ..^ T t = k + 1 B k < B t k 0 ..^ T t = k + 1 B k < B k + 1
31 16 25 30 mp2b k 0 ..^ T t = k + 1 B k < B k + 1
32 31 rspec k 0 ..^ T t = k + 1 B k < B k + 1
33 32 eximdv k 0 ..^ T t t = k + 1 t B k < B k + 1
34 3 33 mpi k 0 ..^ T t B k < B k + 1
35 ax5e t B k < B k + 1 B k < B k + 1
36 34 35 syl k 0 ..^ T B k < B k + 1
37 36 rgen k 0 ..^ T B k < B k + 1