| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natlocalincr.1 |
|- A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) |
| 2 |
|
ovex |
|- ( k + 1 ) e. _V |
| 3 |
2
|
isseti |
|- E. t t = ( k + 1 ) |
| 4 |
|
rsp |
|- ( A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) -> ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) |
| 5 |
4
|
ralimi |
|- ( A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) -> A. k e. ( 0 ..^ T ) ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) |
| 6 |
|
1z |
|- 1 e. ZZ |
| 7 |
|
fzoaddel |
|- ( ( k e. ( 0 ..^ T ) /\ 1 e. ZZ ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) |
| 8 |
6 7
|
mpan2 |
|- ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) |
| 9 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 10 |
9
|
oveq1i |
|- ( ( 0 + 1 ) ..^ ( T + 1 ) ) = ( 1 ..^ ( T + 1 ) ) |
| 11 |
8 10
|
eleqtrdi |
|- ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) |
| 12 |
|
eleq1 |
|- ( t = ( k + 1 ) -> ( t e. ( 1 ..^ ( T + 1 ) ) <-> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) ) |
| 13 |
11 12
|
syl5ibrcom |
|- ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> t e. ( 1 ..^ ( T + 1 ) ) ) ) |
| 14 |
13
|
imim1d |
|- ( k e. ( 0 ..^ T ) -> ( ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) ) |
| 15 |
14
|
ralimia |
|- ( A. k e. ( 0 ..^ T ) ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) |
| 16 |
1 5 15
|
mp2b |
|- A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) |
| 17 |
|
elfzoelz |
|- ( k e. ( 0 ..^ T ) -> k e. ZZ ) |
| 18 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
| 19 |
|
ltp1 |
|- ( k e. RR -> k < ( k + 1 ) ) |
| 20 |
17 18 19
|
3syl |
|- ( k e. ( 0 ..^ T ) -> k < ( k + 1 ) ) |
| 21 |
|
breq2 |
|- ( t = ( k + 1 ) -> ( k < t <-> k < ( k + 1 ) ) ) |
| 22 |
20 21
|
syl5ibrcom |
|- ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> k < t ) ) |
| 23 |
|
ax-2 |
|- ( ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( ( t = ( k + 1 ) -> k < t ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) ) |
| 24 |
22 23
|
syl5com |
|- ( k e. ( 0 ..^ T ) -> ( ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) ) |
| 25 |
24
|
ralimia |
|- ( A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) |
| 26 |
|
fveq2 |
|- ( t = ( k + 1 ) -> ( B ` t ) = ( B ` ( k + 1 ) ) ) |
| 27 |
26
|
breq2d |
|- ( t = ( k + 1 ) -> ( ( B ` k ) < ( B ` t ) <-> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 28 |
27
|
biimpd |
|- ( t = ( k + 1 ) -> ( ( B ` k ) < ( B ` t ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 29 |
28
|
a2i |
|- ( ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 30 |
29
|
ralimi |
|- ( A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 31 |
16 25 30
|
mp2b |
|- A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) |
| 32 |
31
|
rspec |
|- ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 33 |
32
|
eximdv |
|- ( k e. ( 0 ..^ T ) -> ( E. t t = ( k + 1 ) -> E. t ( B ` k ) < ( B ` ( k + 1 ) ) ) ) |
| 34 |
3 33
|
mpi |
|- ( k e. ( 0 ..^ T ) -> E. t ( B ` k ) < ( B ` ( k + 1 ) ) ) |
| 35 |
|
ax5e |
|- ( E. t ( B ` k ) < ( B ` ( k + 1 ) ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) |
| 36 |
34 35
|
syl |
|- ( k e. ( 0 ..^ T ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) |
| 37 |
36
|
rgen |
|- A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) |