| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natlocalincr.1 |  |-  A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) | 
						
							| 2 |  | ovex |  |-  ( k + 1 ) e. _V | 
						
							| 3 | 2 | isseti |  |-  E. t t = ( k + 1 ) | 
						
							| 4 |  | rsp |  |-  ( A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) -> ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) | 
						
							| 5 | 4 | ralimi |  |-  ( A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < t -> ( B ` k ) < ( B ` t ) ) -> A. k e. ( 0 ..^ T ) ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) | 
						
							| 6 |  | 1z |  |-  1 e. ZZ | 
						
							| 7 |  | fzoaddel |  |-  ( ( k e. ( 0 ..^ T ) /\ 1 e. ZZ ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( ( 0 + 1 ) ..^ ( T + 1 ) ) ) | 
						
							| 9 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( 0 + 1 ) ..^ ( T + 1 ) ) = ( 1 ..^ ( T + 1 ) ) | 
						
							| 11 | 8 10 | eleqtrdi |  |-  ( k e. ( 0 ..^ T ) -> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) | 
						
							| 12 |  | eleq1 |  |-  ( t = ( k + 1 ) -> ( t e. ( 1 ..^ ( T + 1 ) ) <-> ( k + 1 ) e. ( 1 ..^ ( T + 1 ) ) ) ) | 
						
							| 13 | 11 12 | syl5ibrcom |  |-  ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> t e. ( 1 ..^ ( T + 1 ) ) ) ) | 
						
							| 14 | 13 | imim1d |  |-  ( k e. ( 0 ..^ T ) -> ( ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) ) | 
						
							| 15 | 14 | ralimia |  |-  ( A. k e. ( 0 ..^ T ) ( t e. ( 1 ..^ ( T + 1 ) ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) ) | 
						
							| 16 | 1 5 15 | mp2b |  |-  A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) | 
						
							| 17 |  | elfzoelz |  |-  ( k e. ( 0 ..^ T ) -> k e. ZZ ) | 
						
							| 18 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 19 |  | ltp1 |  |-  ( k e. RR -> k < ( k + 1 ) ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( k e. ( 0 ..^ T ) -> k < ( k + 1 ) ) | 
						
							| 21 |  | breq2 |  |-  ( t = ( k + 1 ) -> ( k < t <-> k < ( k + 1 ) ) ) | 
						
							| 22 | 20 21 | syl5ibrcom |  |-  ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> k < t ) ) | 
						
							| 23 |  | ax-2 |  |-  ( ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( ( t = ( k + 1 ) -> k < t ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) ) | 
						
							| 24 | 22 23 | syl5com |  |-  ( k e. ( 0 ..^ T ) -> ( ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) ) | 
						
							| 25 | 24 | ralimia |  |-  ( A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( k < t -> ( B ` k ) < ( B ` t ) ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) ) | 
						
							| 26 |  | fveq2 |  |-  ( t = ( k + 1 ) -> ( B ` t ) = ( B ` ( k + 1 ) ) ) | 
						
							| 27 | 26 | breq2d |  |-  ( t = ( k + 1 ) -> ( ( B ` k ) < ( B ` t ) <-> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 28 | 27 | biimpd |  |-  ( t = ( k + 1 ) -> ( ( B ` k ) < ( B ` t ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 29 | 28 | a2i |  |-  ( ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 30 | 29 | ralimi |  |-  ( A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` t ) ) -> A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 31 | 16 25 30 | mp2b |  |-  A. k e. ( 0 ..^ T ) ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) | 
						
							| 32 | 31 | rspec |  |-  ( k e. ( 0 ..^ T ) -> ( t = ( k + 1 ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 33 | 32 | eximdv |  |-  ( k e. ( 0 ..^ T ) -> ( E. t t = ( k + 1 ) -> E. t ( B ` k ) < ( B ` ( k + 1 ) ) ) ) | 
						
							| 34 | 3 33 | mpi |  |-  ( k e. ( 0 ..^ T ) -> E. t ( B ` k ) < ( B ` ( k + 1 ) ) ) | 
						
							| 35 |  | ax5e |  |-  ( E. t ( B ` k ) < ( B ` ( k + 1 ) ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( k e. ( 0 ..^ T ) -> ( B ` k ) < ( B ` ( k + 1 ) ) ) | 
						
							| 37 | 36 | rgen |  |-  A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) |