Step |
Hyp |
Ref |
Expression |
1 |
|
natglobalincr.1 |
|
2 |
|
natglobalincr.2 |
|
3 |
|
elfzoelz |
|
4 |
3
|
peano2zd |
|
5 |
|
elfz1 |
|
6 |
4 2 5
|
sylancl |
|
7 |
|
fveq2 |
|
8 |
7
|
breq2d |
|
9 |
|
fveq2 |
|
10 |
9
|
breq2d |
|
11 |
|
fveq2 |
|
12 |
11
|
breq2d |
|
13 |
|
fveq2 |
|
14 |
13
|
breq2d |
|
15 |
1
|
rspec |
|
16 |
|
df-br |
|
17 |
|
ltrelxr |
|
18 |
17
|
sseli |
|
19 |
16 18
|
sylbi |
|
20 |
|
opelxp1 |
|
21 |
19 20
|
syl |
|
22 |
21
|
3ad2ant3 |
|
23 |
|
opelxp2 |
|
24 |
19 23
|
syl |
|
25 |
24
|
3ad2ant3 |
|
26 |
|
0red |
|
27 |
|
simp1 |
|
28 |
|
zre |
|
29 |
|
peano2re |
|
30 |
27 3 28 29
|
4syl |
|
31 |
|
simp21 |
|
32 |
31
|
zred |
|
33 |
|
elfzole1 |
|
34 |
28
|
ltp1d |
|
35 |
3 34
|
syl |
|
36 |
|
0red |
|
37 |
|
id |
|
38 |
36 37 29
|
3jca |
|
39 |
|
leltletr |
|
40 |
3 28 38 39
|
4syl |
|
41 |
33 35 40
|
mp2and |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
simp22 |
|
44 |
26 30 32 42 43
|
letrd |
|
45 |
|
simp23 |
|
46 |
|
0zd |
|
47 |
2
|
a1i |
|
48 |
|
elfzo |
|
49 |
46 47 48
|
mpd3an23 |
|
50 |
|
fveq2 |
|
51 |
|
fvoveq1 |
|
52 |
50 51
|
breq12d |
|
53 |
52 1
|
vtoclri |
|
54 |
49 53
|
biimtrrdi |
|
55 |
31 54
|
syl |
|
56 |
44 45 55
|
mp2and |
|
57 |
|
df-br |
|
58 |
17
|
sseli |
|
59 |
57 58
|
sylbi |
|
60 |
|
opelxp2 |
|
61 |
56 59 60
|
3syl |
|
62 |
|
simp3 |
|
63 |
22 25 61 62 56
|
xrlttrd |
|
64 |
|
elfzoel2 |
|
65 |
|
elfzop1le2 |
|
66 |
8 10 12 14 15 63 4 64 65
|
fzindd |
|
67 |
6 66
|
sylbida |
|
68 |
67
|
rgen2 |
|