Metamath Proof Explorer


Theorem natglobalincr

Description: Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024)

Ref Expression
Hypotheses natglobalincr.1 k 0 ..^ T B k < B k + 1
natglobalincr.2 T
Assertion natglobalincr k 0 ..^ T t k + 1 T B k < B t

Proof

Step Hyp Ref Expression
1 natglobalincr.1 k 0 ..^ T B k < B k + 1
2 natglobalincr.2 T
3 elfzoelz k 0 ..^ T k
4 3 peano2zd k 0 ..^ T k + 1
5 elfz1 k + 1 T t k + 1 T t k + 1 t t T
6 4 2 5 sylancl k 0 ..^ T t k + 1 T t k + 1 t t T
7 fveq2 a = k + 1 B a = B k + 1
8 7 breq2d a = k + 1 B k < B a B k < B k + 1
9 fveq2 a = b B a = B b
10 9 breq2d a = b B k < B a B k < B b
11 fveq2 a = b + 1 B a = B b + 1
12 11 breq2d a = b + 1 B k < B a B k < B b + 1
13 fveq2 a = t B a = B t
14 13 breq2d a = t B k < B a B k < B t
15 1 rspec k 0 ..^ T B k < B k + 1
16 df-br B k < B b B k B b <
17 ltrelxr < * × *
18 17 sseli B k B b < B k B b * × *
19 16 18 sylbi B k < B b B k B b * × *
20 opelxp1 B k B b * × * B k *
21 19 20 syl B k < B b B k *
22 21 3ad2ant3 k 0 ..^ T b k + 1 b b < T B k < B b B k *
23 opelxp2 B k B b * × * B b *
24 19 23 syl B k < B b B b *
25 24 3ad2ant3 k 0 ..^ T b k + 1 b b < T B k < B b B b *
26 0red k 0 ..^ T b k + 1 b b < T B k < B b 0
27 simp1 k 0 ..^ T b k + 1 b b < T B k < B b k 0 ..^ T
28 zre k k
29 peano2re k k + 1
30 27 3 28 29 4syl k 0 ..^ T b k + 1 b b < T B k < B b k + 1
31 simp21 k 0 ..^ T b k + 1 b b < T B k < B b b
32 31 zred k 0 ..^ T b k + 1 b b < T B k < B b b
33 elfzole1 k 0 ..^ T 0 k
34 28 ltp1d k k < k + 1
35 3 34 syl k 0 ..^ T k < k + 1
36 0red k 0
37 id k k
38 36 37 29 3jca k 0 k k + 1
39 leltletr 0 k k + 1 0 k k < k + 1 0 k + 1
40 3 28 38 39 4syl k 0 ..^ T 0 k k < k + 1 0 k + 1
41 33 35 40 mp2and k 0 ..^ T 0 k + 1
42 41 3ad2ant1 k 0 ..^ T b k + 1 b b < T B k < B b 0 k + 1
43 simp22 k 0 ..^ T b k + 1 b b < T B k < B b k + 1 b
44 26 30 32 42 43 letrd k 0 ..^ T b k + 1 b b < T B k < B b 0 b
45 simp23 k 0 ..^ T b k + 1 b b < T B k < B b b < T
46 0zd b 0
47 2 a1i b T
48 elfzo b 0 T b 0 ..^ T 0 b b < T
49 46 47 48 mpd3an23 b b 0 ..^ T 0 b b < T
50 fveq2 k = b B k = B b
51 fvoveq1 k = b B k + 1 = B b + 1
52 50 51 breq12d k = b B k < B k + 1 B b < B b + 1
53 52 1 vtoclri b 0 ..^ T B b < B b + 1
54 49 53 biimtrrdi b 0 b b < T B b < B b + 1
55 31 54 syl k 0 ..^ T b k + 1 b b < T B k < B b 0 b b < T B b < B b + 1
56 44 45 55 mp2and k 0 ..^ T b k + 1 b b < T B k < B b B b < B b + 1
57 df-br B b < B b + 1 B b B b + 1 <
58 17 sseli B b B b + 1 < B b B b + 1 * × *
59 57 58 sylbi B b < B b + 1 B b B b + 1 * × *
60 opelxp2 B b B b + 1 * × * B b + 1 *
61 56 59 60 3syl k 0 ..^ T b k + 1 b b < T B k < B b B b + 1 *
62 simp3 k 0 ..^ T b k + 1 b b < T B k < B b B k < B b
63 22 25 61 62 56 xrlttrd k 0 ..^ T b k + 1 b b < T B k < B b B k < B b + 1
64 elfzoel2 k 0 ..^ T T
65 elfzop1le2 k 0 ..^ T k + 1 T
66 8 10 12 14 15 63 4 64 65 fzindd k 0 ..^ T t k + 1 t t T B k < B t
67 6 66 sylbida k 0 ..^ T t k + 1 T B k < B t
68 67 rgen2 k 0 ..^ T t k + 1 T B k < B t