Step |
Hyp |
Ref |
Expression |
1 |
|
natglobalincr.1 |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) |
2 |
|
natglobalincr.2 |
⊢ 𝑇 ∈ ℤ |
3 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 ∈ ℤ ) |
4 |
3
|
peano2zd |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
5 |
|
elfz1 |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℤ ∧ 𝑇 ∈ ℤ ) → ( 𝑡 ∈ ( ( 𝑘 + 1 ) ... 𝑇 ) ↔ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) |
6 |
4 2 5
|
sylancl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑡 ∈ ( ( 𝑘 + 1 ) ... 𝑇 ) ↔ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑘 + 1 ) → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑎 = ( 𝑘 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑏 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑎 = 𝑡 → ( 𝐵 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑡 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑎 ) ↔ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) ) |
15 |
1
|
rspec |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ) |
16 |
|
df-br |
⊢ ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ↔ 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ < ) |
17 |
|
ltrelxr |
⊢ < ⊆ ( ℝ* × ℝ* ) |
18 |
17
|
sseli |
⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ < → 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ ( ℝ* × ℝ* ) ) |
19 |
16 18
|
sylbi |
⊢ ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) → 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ ( ℝ* × ℝ* ) ) |
20 |
|
opelxp1 |
⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ ( ℝ* × ℝ* ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
22 |
21
|
3ad2ant3 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
23 |
|
opelxp2 |
⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) , ( 𝐵 ‘ 𝑏 ) 〉 ∈ ( ℝ* × ℝ* ) → ( 𝐵 ‘ 𝑏 ) ∈ ℝ* ) |
24 |
19 23
|
syl |
⊢ ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) → ( 𝐵 ‘ 𝑏 ) ∈ ℝ* ) |
25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑏 ) ∈ ℝ* ) |
26 |
|
0red |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 0 ∈ ℝ ) |
27 |
|
simp1 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 𝑘 ∈ ( 0 ..^ 𝑇 ) ) |
28 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
29 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
30 |
27 3 28 29
|
4syl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
31 |
|
simp21 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ℤ ) |
32 |
31
|
zred |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 𝑏 ∈ ℝ ) |
33 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 0 ≤ 𝑘 ) |
34 |
28
|
ltp1d |
⊢ ( 𝑘 ∈ ℤ → 𝑘 < ( 𝑘 + 1 ) ) |
35 |
3 34
|
syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑘 < ( 𝑘 + 1 ) ) |
36 |
|
0red |
⊢ ( 𝑘 ∈ ℝ → 0 ∈ ℝ ) |
37 |
|
id |
⊢ ( 𝑘 ∈ ℝ → 𝑘 ∈ ℝ ) |
38 |
36 37 29
|
3jca |
⊢ ( 𝑘 ∈ ℝ → ( 0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) ) |
39 |
|
leltletr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( ( 0 ≤ 𝑘 ∧ 𝑘 < ( 𝑘 + 1 ) ) → 0 ≤ ( 𝑘 + 1 ) ) ) |
40 |
3 28 38 39
|
4syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( ( 0 ≤ 𝑘 ∧ 𝑘 < ( 𝑘 + 1 ) ) → 0 ≤ ( 𝑘 + 1 ) ) ) |
41 |
33 35 40
|
mp2and |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 0 ≤ ( 𝑘 + 1 ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ ( 𝑘 + 1 ) ) |
43 |
|
simp22 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝑘 + 1 ) ≤ 𝑏 ) |
44 |
26 30 32 42 43
|
letrd |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 0 ≤ 𝑏 ) |
45 |
|
simp23 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → 𝑏 < 𝑇 ) |
46 |
|
0zd |
⊢ ( 𝑏 ∈ ℤ → 0 ∈ ℤ ) |
47 |
2
|
a1i |
⊢ ( 𝑏 ∈ ℤ → 𝑇 ∈ ℤ ) |
48 |
|
elfzo |
⊢ ( ( 𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑇 ∈ ℤ ) → ( 𝑏 ∈ ( 0 ..^ 𝑇 ) ↔ ( 0 ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ) ) |
49 |
46 47 48
|
mpd3an23 |
⊢ ( 𝑏 ∈ ℤ → ( 𝑏 ∈ ( 0 ..^ 𝑇 ) ↔ ( 0 ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑘 = 𝑏 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑏 ) ) |
51 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑏 → ( 𝐵 ‘ ( 𝑘 + 1 ) ) = ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
52 |
50 51
|
breq12d |
⊢ ( 𝑘 = 𝑏 → ( ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
53 |
52 1
|
vtoclri |
⊢ ( 𝑏 ∈ ( 0 ..^ 𝑇 ) → ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
54 |
49 53
|
biimtrrdi |
⊢ ( 𝑏 ∈ ℤ → ( ( 0 ≤ 𝑏 ∧ 𝑏 < 𝑇 ) → ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
55 |
31 54
|
syl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( ( 0 ≤ 𝑏 ∧ 𝑏 < 𝑇 ) → ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) ) |
56 |
44 45 55
|
mp2and |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
57 |
|
df-br |
⊢ ( ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ↔ 〈 ( 𝐵 ‘ 𝑏 ) , ( 𝐵 ‘ ( 𝑏 + 1 ) ) 〉 ∈ < ) |
58 |
17
|
sseli |
⊢ ( 〈 ( 𝐵 ‘ 𝑏 ) , ( 𝐵 ‘ ( 𝑏 + 1 ) ) 〉 ∈ < → 〈 ( 𝐵 ‘ 𝑏 ) , ( 𝐵 ‘ ( 𝑏 + 1 ) ) 〉 ∈ ( ℝ* × ℝ* ) ) |
59 |
57 58
|
sylbi |
⊢ ( ( 𝐵 ‘ 𝑏 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) → 〈 ( 𝐵 ‘ 𝑏 ) , ( 𝐵 ‘ ( 𝑏 + 1 ) ) 〉 ∈ ( ℝ* × ℝ* ) ) |
60 |
|
opelxp2 |
⊢ ( 〈 ( 𝐵 ‘ 𝑏 ) , ( 𝐵 ‘ ( 𝑏 + 1 ) ) 〉 ∈ ( ℝ* × ℝ* ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ ℝ* ) |
61 |
56 59 60
|
3syl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ ( 𝑏 + 1 ) ) ∈ ℝ* ) |
62 |
|
simp3 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) |
63 |
22 25 61 62 56
|
xrlttrd |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑏 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑏 ∧ 𝑏 < 𝑇 ) ∧ ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑏 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ ( 𝑏 + 1 ) ) ) |
64 |
|
elfzoel2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → 𝑇 ∈ ℤ ) |
65 |
|
elfzop1le2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑇 ) → ( 𝑘 + 1 ) ≤ 𝑇 ) |
66 |
8 10 12 14 15 63 4 64 65
|
fzindd |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ ( 𝑡 ∈ ℤ ∧ ( 𝑘 + 1 ) ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) |
67 |
6 66
|
sylbida |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑇 ) ∧ 𝑡 ∈ ( ( 𝑘 + 1 ) ... 𝑇 ) ) → ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) ) |
68 |
67
|
rgen2 |
⊢ ∀ 𝑘 ∈ ( 0 ..^ 𝑇 ) ∀ 𝑡 ∈ ( ( 𝑘 + 1 ) ... 𝑇 ) ( 𝐵 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑡 ) |