| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natglobalincr.1 | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) | 
						
							| 2 |  | natglobalincr.2 | ⊢ 𝑇  ∈  ℤ | 
						
							| 3 |  | elfzoelz | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  𝑘  ∈  ℤ ) | 
						
							| 4 | 3 | peano2zd | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 5 |  | elfz1 | ⊢ ( ( ( 𝑘  +  1 )  ∈  ℤ  ∧  𝑇  ∈  ℤ )  →  ( 𝑡  ∈  ( ( 𝑘  +  1 ) ... 𝑇 )  ↔  ( 𝑡  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑡  ∧  𝑡  ≤  𝑇 ) ) ) | 
						
							| 6 | 4 2 5 | sylancl | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑡  ∈  ( ( 𝑘  +  1 ) ... 𝑇 )  ↔  ( 𝑡  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑡  ∧  𝑡  ≤  𝑇 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( 𝐵 ‘ 𝑎 )  =  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 8 | 7 | breq2d | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑎 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐵 ‘ 𝑎 )  =  ( 𝐵 ‘ 𝑏 ) ) | 
						
							| 10 | 9 | breq2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑎 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝐵 ‘ 𝑎 )  =  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 12 | 11 | breq2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑎 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑎  =  𝑡  →  ( 𝐵 ‘ 𝑎 )  =  ( 𝐵 ‘ 𝑡 ) ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑎  =  𝑡  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑎 )  ↔  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) ) | 
						
							| 15 | 1 | rspec | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 16 |  | df-br | ⊢ ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 )  ↔  〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈   <  ) | 
						
							| 17 |  | ltrelxr | ⊢  <   ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 18 | 17 | sseli | ⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈   <   →  〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈  ( ℝ*  ×  ℝ* ) ) | 
						
							| 19 | 16 18 | sylbi | ⊢ ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 )  →  〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈  ( ℝ*  ×  ℝ* ) ) | 
						
							| 20 |  | opelxp1 | ⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈  ( ℝ*  ×  ℝ* )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 23 |  | opelxp2 | ⊢ ( 〈 ( 𝐵 ‘ 𝑘 ) ,  ( 𝐵 ‘ 𝑏 ) 〉  ∈  ( ℝ*  ×  ℝ* )  →  ( 𝐵 ‘ 𝑏 )  ∈  ℝ* ) | 
						
							| 24 | 19 23 | syl | ⊢ ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 )  →  ( 𝐵 ‘ 𝑏 )  ∈  ℝ* ) | 
						
							| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ 𝑏 )  ∈  ℝ* ) | 
						
							| 26 |  | 0red | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  0  ∈  ℝ ) | 
						
							| 27 |  | simp1 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  𝑘  ∈  ( 0 ..^ 𝑇 ) ) | 
						
							| 28 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 29 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 30 | 27 3 28 29 | 4syl | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 31 |  | simp21 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  𝑏  ∈  ℤ ) | 
						
							| 32 | 31 | zred | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  𝑏  ∈  ℝ ) | 
						
							| 33 |  | elfzole1 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  0  ≤  𝑘 ) | 
						
							| 34 | 28 | ltp1d | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 35 | 3 34 | syl | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 36 |  | 0red | ⊢ ( 𝑘  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 37 |  | id | ⊢ ( 𝑘  ∈  ℝ  →  𝑘  ∈  ℝ ) | 
						
							| 38 | 36 37 29 | 3jca | ⊢ ( 𝑘  ∈  ℝ  →  ( 0  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ ) ) | 
						
							| 39 |  | leltletr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ )  →  ( ( 0  ≤  𝑘  ∧  𝑘  <  ( 𝑘  +  1 ) )  →  0  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 40 | 3 28 38 39 | 4syl | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( ( 0  ≤  𝑘  ∧  𝑘  <  ( 𝑘  +  1 ) )  →  0  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 41 | 33 35 40 | mp2and | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  0  ≤  ( 𝑘  +  1 ) ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  0  ≤  ( 𝑘  +  1 ) ) | 
						
							| 43 |  | simp22 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝑘  +  1 )  ≤  𝑏 ) | 
						
							| 44 | 26 30 32 42 43 | letrd | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  0  ≤  𝑏 ) | 
						
							| 45 |  | simp23 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  𝑏  <  𝑇 ) | 
						
							| 46 |  | 0zd | ⊢ ( 𝑏  ∈  ℤ  →  0  ∈  ℤ ) | 
						
							| 47 | 2 | a1i | ⊢ ( 𝑏  ∈  ℤ  →  𝑇  ∈  ℤ ) | 
						
							| 48 |  | elfzo | ⊢ ( ( 𝑏  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝑇  ∈  ℤ )  →  ( 𝑏  ∈  ( 0 ..^ 𝑇 )  ↔  ( 0  ≤  𝑏  ∧  𝑏  <  𝑇 ) ) ) | 
						
							| 49 | 46 47 48 | mpd3an23 | ⊢ ( 𝑏  ∈  ℤ  →  ( 𝑏  ∈  ( 0 ..^ 𝑇 )  ↔  ( 0  ≤  𝑏  ∧  𝑏  <  𝑇 ) ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑘  =  𝑏  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑏 ) ) | 
						
							| 51 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑏  →  ( 𝐵 ‘ ( 𝑘  +  1 ) )  =  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 52 | 50 51 | breq12d | ⊢ ( 𝑘  =  𝑏  →  ( ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑘  +  1 ) )  ↔  ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) ) | 
						
							| 53 | 52 1 | vtoclri | ⊢ ( 𝑏  ∈  ( 0 ..^ 𝑇 )  →  ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 54 | 49 53 | biimtrrdi | ⊢ ( 𝑏  ∈  ℤ  →  ( ( 0  ≤  𝑏  ∧  𝑏  <  𝑇 )  →  ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) ) | 
						
							| 55 | 31 54 | syl | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( ( 0  ≤  𝑏  ∧  𝑏  <  𝑇 )  →  ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) ) | 
						
							| 56 | 44 45 55 | mp2and | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 57 |  | df-br | ⊢ ( ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) )  ↔  〈 ( 𝐵 ‘ 𝑏 ) ,  ( 𝐵 ‘ ( 𝑏  +  1 ) ) 〉  ∈   <  ) | 
						
							| 58 | 17 | sseli | ⊢ ( 〈 ( 𝐵 ‘ 𝑏 ) ,  ( 𝐵 ‘ ( 𝑏  +  1 ) ) 〉  ∈   <   →  〈 ( 𝐵 ‘ 𝑏 ) ,  ( 𝐵 ‘ ( 𝑏  +  1 ) ) 〉  ∈  ( ℝ*  ×  ℝ* ) ) | 
						
							| 59 | 57 58 | sylbi | ⊢ ( ( 𝐵 ‘ 𝑏 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) )  →  〈 ( 𝐵 ‘ 𝑏 ) ,  ( 𝐵 ‘ ( 𝑏  +  1 ) ) 〉  ∈  ( ℝ*  ×  ℝ* ) ) | 
						
							| 60 |  | opelxp2 | ⊢ ( 〈 ( 𝐵 ‘ 𝑏 ) ,  ( 𝐵 ‘ ( 𝑏  +  1 ) ) 〉  ∈  ( ℝ*  ×  ℝ* )  →  ( 𝐵 ‘ ( 𝑏  +  1 ) )  ∈  ℝ* ) | 
						
							| 61 | 56 59 60 | 3syl | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ ( 𝑏  +  1 ) )  ∈  ℝ* ) | 
						
							| 62 |  | simp3 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) ) | 
						
							| 63 | 22 25 61 62 56 | xrlttrd | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑏  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑏  ∧  𝑏  <  𝑇 )  ∧  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑏 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 64 |  | elfzoel2 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  𝑇  ∈  ℤ ) | 
						
							| 65 |  | elfzop1le2 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑇 )  →  ( 𝑘  +  1 )  ≤  𝑇 ) | 
						
							| 66 | 8 10 12 14 15 63 4 64 65 | fzindd | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  ( 𝑡  ∈  ℤ  ∧  ( 𝑘  +  1 )  ≤  𝑡  ∧  𝑡  ≤  𝑇 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) | 
						
							| 67 | 6 66 | sylbida | ⊢ ( ( 𝑘  ∈  ( 0 ..^ 𝑇 )  ∧  𝑡  ∈  ( ( 𝑘  +  1 ) ... 𝑇 ) )  →  ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) ) | 
						
							| 68 | 67 | rgen2 | ⊢ ∀ 𝑘  ∈  ( 0 ..^ 𝑇 ) ∀ 𝑡  ∈  ( ( 𝑘  +  1 ) ... 𝑇 ) ( 𝐵 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑡 ) |