Metamath Proof Explorer


Theorem elfzop1le2

Description: A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elfzop1le2 KM..^NK+1N

Proof

Step Hyp Ref Expression
1 elfzolt2 KM..^NK<N
2 elfzoelz KM..^NK
3 elfzoel2 KM..^NN
4 zltp1le KNK<NK+1N
5 2 3 4 syl2anc KM..^NK<NK+1N
6 1 5 mpbid KM..^NK+1N