Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A < 0 /\ A e. RR ) -> A e. RR ) |
2 |
|
id |
|- ( A e. RR -> A e. RR ) |
3 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
4 |
2 3
|
ltnled |
|- ( A e. RR -> ( A < 0 <-> -. 0 <_ A ) ) |
5 |
4
|
biimpd |
|- ( A e. RR -> ( A < 0 -> -. 0 <_ A ) ) |
6 |
5
|
impcom |
|- ( ( A < 0 /\ A e. RR ) -> -. 0 <_ A ) |
7 |
1 6
|
jcnd |
|- ( ( A < 0 /\ A e. RR ) -> -. ( A e. RR -> 0 <_ A ) ) |
8 |
7
|
ancoms |
|- ( ( A e. RR /\ A < 0 ) -> -. ( A e. RR -> 0 <_ A ) ) |
9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
10 |
9
|
sqsqrtd |
|- ( A e. RR -> ( ( sqrt ` A ) ^ 2 ) = A ) |
11 |
|
sqge0 |
|- ( ( sqrt ` A ) e. RR -> 0 <_ ( ( sqrt ` A ) ^ 2 ) ) |
12 |
|
breq2 |
|- ( ( ( sqrt ` A ) ^ 2 ) = A -> ( 0 <_ ( ( sqrt ` A ) ^ 2 ) <-> 0 <_ A ) ) |
13 |
12
|
biimpd |
|- ( ( ( sqrt ` A ) ^ 2 ) = A -> ( 0 <_ ( ( sqrt ` A ) ^ 2 ) -> 0 <_ A ) ) |
14 |
10 11 13
|
syl2imc |
|- ( ( sqrt ` A ) e. RR -> ( A e. RR -> 0 <_ A ) ) |
15 |
8 14
|
nsyl |
|- ( ( A e. RR /\ A < 0 ) -> -. ( sqrt ` A ) e. RR ) |