| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A < 0 /\ A e. RR ) -> A e. RR ) | 
						
							| 2 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 3 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 4 | 2 3 | ltnled |  |-  ( A e. RR -> ( A < 0 <-> -. 0 <_ A ) ) | 
						
							| 5 | 4 | biimpd |  |-  ( A e. RR -> ( A < 0 -> -. 0 <_ A ) ) | 
						
							| 6 | 5 | impcom |  |-  ( ( A < 0 /\ A e. RR ) -> -. 0 <_ A ) | 
						
							| 7 | 1 6 | jcnd |  |-  ( ( A < 0 /\ A e. RR ) -> -. ( A e. RR -> 0 <_ A ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( A e. RR /\ A < 0 ) -> -. ( A e. RR -> 0 <_ A ) ) | 
						
							| 9 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 10 | 9 | sqsqrtd |  |-  ( A e. RR -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 11 |  | sqge0 |  |-  ( ( sqrt ` A ) e. RR -> 0 <_ ( ( sqrt ` A ) ^ 2 ) ) | 
						
							| 12 |  | breq2 |  |-  ( ( ( sqrt ` A ) ^ 2 ) = A -> ( 0 <_ ( ( sqrt ` A ) ^ 2 ) <-> 0 <_ A ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( ( ( sqrt ` A ) ^ 2 ) = A -> ( 0 <_ ( ( sqrt ` A ) ^ 2 ) -> 0 <_ A ) ) | 
						
							| 14 | 10 11 13 | syl2imc |  |-  ( ( sqrt ` A ) e. RR -> ( A e. RR -> 0 <_ A ) ) | 
						
							| 15 | 8 14 | nsyl |  |-  ( ( A e. RR /\ A < 0 ) -> -. ( sqrt ` A ) e. RR ) |