Metamath Proof Explorer


Theorem eu1

Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of Margaris p. 110. (Contributed by NM, 20-Aug-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 29-Oct-2018) Avoid ax-13 . (Revised by Wolf Lammen, 7-Feb-2023)

Ref Expression
Hypothesis eu1.nf yφ
Assertion eu1 ∃!xφxφyyxφx=y

Proof

Step Hyp Ref Expression
1 eu1.nf yφ
2 nfs1v xyxφ
3 2 euf ∃!yyxφxyyxφy=x
4 1 sb8euv ∃!xφ∃!yyxφ
5 1 sb6rfv φyy=xyxφ
6 equcom x=yy=x
7 6 imbi2i yxφx=yyxφy=x
8 7 albii yyxφx=yyyxφy=x
9 5 8 anbi12ci φyyxφx=yyyxφy=xyy=xyxφ
10 albiim yyxφy=xyyxφy=xyy=xyxφ
11 9 10 bitr4i φyyxφx=yyyxφy=x
12 11 exbii xφyyxφx=yxyyxφy=x
13 3 4 12 3bitr4i ∃!xφxφyyxφx=y