Metamath Proof Explorer


Theorem euabsn

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion euabsn ∃!xφxx|φ=x

Proof

Step Hyp Ref Expression
1 euabsn2 ∃!xφyx|φ=y
2 nfv yx|φ=x
3 nfab1 _xx|φ
4 3 nfeq1 xx|φ=y
5 sneq x=yx=y
6 5 eqeq2d x=yx|φ=xx|φ=y
7 2 4 6 cbvexv1 xx|φ=xyx|φ=y
8 1 7 bitr4i ∃!xφxx|φ=x