Metamath Proof Explorer


Theorem eufndx

Description: Index value of the Euclidean function slot. Use ndxarg . (Contributed by Thierry Arnoux, 22-Mar-2025) (New usage is discouraged.)

Ref Expression
Assertion eufndx EuclF ndx = 21

Proof

Step Hyp Ref Expression
1 df-euf EuclF = Slot 21
2 2nn0 2 0
3 1nn 1
4 2 3 decnncl 21
5 1 4 ndxarg EuclF ndx = 21