Metamath Proof Explorer


Theorem eufsn

Description: There is exactly one function into a singleton, assuming ax-rep . See eufsn2 for different axiom requirements. If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 φ B W
eufsn.2 φ A V
Assertion eufsn φ ∃! f f : A B

Proof

Step Hyp Ref Expression
1 eufsn.1 φ B W
2 eufsn.2 φ A V
3 fconstmpt A × B = x A B
4 mptexg A V x A B V
5 3 4 eqeltrid A V A × B V
6 2 5 syl φ A × B V
7 1 6 eufsnlem φ ∃! f f : A B