Metamath Proof Explorer


Theorem eulerid

Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eulerid eiπ+1=0

Proof

Step Hyp Ref Expression
1 efipi eiπ=1
2 1 oveq1i eiπ+1=-1+1
3 ax-1cn 1
4 neg1cn 1
5 1pneg1e0 1+-1=0
6 3 4 5 addcomli -1+1=0
7 2 6 eqtri eiπ+1=0