Metamath Proof Explorer


Theorem euor2

Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion euor2 ¬xφ∃!xφψ∃!xψ

Proof

Step Hyp Ref Expression
1 nfe1 xxφ
2 1 nfn x¬xφ
3 19.8a φxφ
4 biorf ¬φψφψ
5 4 bicomd ¬φφψψ
6 3 5 nsyl5 ¬xφφψψ
7 2 6 eubid ¬xφ∃!xφψ∃!xψ