Metamath Proof Explorer


Theorem eupick

Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing x such that ph is true, and there is also an x (actually the same one) such that ph and ps are both true, then ph implies ps regardless of x . This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by NM, 10-Jul-1994)

Ref Expression
Assertion eupick ∃! x φ x φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 eumo ∃! x φ * x φ
2 mopick * x φ x φ ψ φ ψ
3 1 2 sylan ∃! x φ x φ ψ φ ψ