Metamath Proof Explorer


Theorem eupth2lem3lem5

Description: Lemma for eupth2 . (Contributed by AV, 25-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
eupth2lem3.e φIFN=PNPN+1
Assertion eupth2lem3lem5 φIFN𝒫V

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
14 eupth2lem3.e φIFN=PNPN+1
15 1 2 3 4 5 6 trlsegvdeglem1 φPNVPN+1V
16 prelpwi PNVPN+1VPNPN+1𝒫V
17 15 16 syl φPNPN+1𝒫V
18 14 17 eqeltrd φIFN𝒫V