Metamath Proof Explorer


Theorem eupthcl

Description: An Eulerian path has length # ( F ) , which is an integer. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthcl FEulerPathsGPF0

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 eupthi FEulerPathsGPFWalksGPF:0..^F1-1 ontodomiEdgG
3 wlkcl FWalksGPF0
4 3 adantr FWalksGPF:0..^F1-1 ontodomiEdgGF0
5 2 4 syl FEulerPathsGPF0