Metamath Proof Explorer


Theorem eupthres

Description: The restriction <. H , Q >. of an Eulerian path <. F , P >. to an initial segment of the path (of length N ) forms an Eulerian path on the subgraph S consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses eupth0.v V=VtxG
eupth0.i I=iEdgG
eupthres.d φFEulerPathsGP
eupthres.n φN0..^F
eupthres.e φiEdgS=IF0..^N
eupthres.h H=FprefixN
eupthres.q Q=P0N
eupthres.s VtxS=V
Assertion eupthres φHEulerPathsSQ

Proof

Step Hyp Ref Expression
1 eupth0.v V=VtxG
2 eupth0.i I=iEdgG
3 eupthres.d φFEulerPathsGP
4 eupthres.n φN0..^F
5 eupthres.e φiEdgS=IF0..^N
6 eupthres.h H=FprefixN
7 eupthres.q Q=P0N
8 eupthres.s VtxS=V
9 eupthistrl FEulerPathsGPFTrailsGP
10 trliswlk FTrailsGPFWalksGP
11 3 9 10 3syl φFWalksGP
12 8 a1i φVtxS=V
13 1 2 11 4 12 5 6 7 wlkres φHWalksSQ
14 3 9 syl φFTrailsGP
15 1 2 14 4 6 trlreslem φH:0..^H1-1 ontodomIF0..^N
16 eqid iEdgS=iEdgS
17 16 iseupthf1o HEulerPathsSQHWalksSQH:0..^H1-1 ontodomiEdgS
18 5 dmeqd φdomiEdgS=domIF0..^N
19 18 f1oeq3d φH:0..^H1-1 ontodomiEdgSH:0..^H1-1 ontodomIF0..^N
20 19 anbi2d φHWalksSQH:0..^H1-1 ontodomiEdgSHWalksSQH:0..^H1-1 ontodomIF0..^N
21 17 20 bitrid φHEulerPathsSQHWalksSQH:0..^H1-1 ontodomIF0..^N
22 13 15 21 mpbir2and φHEulerPathsSQ