Metamath Proof Explorer


Theorem eupthres

Description: The restriction <. H , Q >. of an Eulerian path <. F , P >. to an initial segment of the path (of length N ) forms an Eulerian path on the subgraph S consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses eupth0.v V = Vtx G
eupth0.i I = iEdg G
eupthres.d φ F EulerPaths G P
eupthres.n φ N 0 ..^ F
eupthres.e φ iEdg S = I F 0 ..^ N
eupthres.h H = F prefix N
eupthres.q Q = P 0 N
eupthres.s Vtx S = V
Assertion eupthres φ H EulerPaths S Q

Proof

Step Hyp Ref Expression
1 eupth0.v V = Vtx G
2 eupth0.i I = iEdg G
3 eupthres.d φ F EulerPaths G P
4 eupthres.n φ N 0 ..^ F
5 eupthres.e φ iEdg S = I F 0 ..^ N
6 eupthres.h H = F prefix N
7 eupthres.q Q = P 0 N
8 eupthres.s Vtx S = V
9 eupthistrl F EulerPaths G P F Trails G P
10 trliswlk F Trails G P F Walks G P
11 3 9 10 3syl φ F Walks G P
12 8 a1i φ Vtx S = V
13 1 2 11 4 12 5 6 7 wlkres φ H Walks S Q
14 3 9 syl φ F Trails G P
15 1 2 14 4 6 trlreslem φ H : 0 ..^ H 1-1 onto dom I F 0 ..^ N
16 eqid iEdg S = iEdg S
17 16 iseupthf1o H EulerPaths S Q H Walks S Q H : 0 ..^ H 1-1 onto dom iEdg S
18 5 dmeqd φ dom iEdg S = dom I F 0 ..^ N
19 18 f1oeq3d φ H : 0 ..^ H 1-1 onto dom iEdg S H : 0 ..^ H 1-1 onto dom I F 0 ..^ N
20 19 anbi2d φ H Walks S Q H : 0 ..^ H 1-1 onto dom iEdg S H Walks S Q H : 0 ..^ H 1-1 onto dom I F 0 ..^ N
21 17 20 syl5bb φ H EulerPaths S Q H Walks S Q H : 0 ..^ H 1-1 onto dom I F 0 ..^ N
22 13 15 21 mpbir2and φ H EulerPaths S Q