Metamath Proof Explorer


Theorem eupthp1

Description: Append one path segment to an Eulerian path <. F , P >. to become an Eulerian path <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 7-Mar-2021) (Proof shortened by AV, 30-Oct-2021) (Revised by AV, 8-Apr-2024)

Ref Expression
Hypotheses eupthp1.v V = Vtx G
eupthp1.i I = iEdg G
eupthp1.f φ Fun I
eupthp1.a φ I Fin
eupthp1.b φ B W
eupthp1.c φ C V
eupthp1.d φ ¬ B dom I
eupthp1.p φ F EulerPaths G P
eupthp1.n N = F
eupthp1.e φ E Edg G
eupthp1.x φ P N C E
eupthp1.u iEdg S = I B E
eupthp1.h H = F N B
eupthp1.q Q = P N + 1 C
eupthp1.s Vtx S = V
eupthp1.l φ C = P N E = C
Assertion eupthp1 φ H EulerPaths S Q

Proof

Step Hyp Ref Expression
1 eupthp1.v V = Vtx G
2 eupthp1.i I = iEdg G
3 eupthp1.f φ Fun I
4 eupthp1.a φ I Fin
5 eupthp1.b φ B W
6 eupthp1.c φ C V
7 eupthp1.d φ ¬ B dom I
8 eupthp1.p φ F EulerPaths G P
9 eupthp1.n N = F
10 eupthp1.e φ E Edg G
11 eupthp1.x φ P N C E
12 eupthp1.u iEdg S = I B E
13 eupthp1.h H = F N B
14 eupthp1.q Q = P N + 1 C
15 eupthp1.s Vtx S = V
16 eupthp1.l φ C = P N E = C
17 eupthiswlk F EulerPaths G P F Walks G P
18 8 17 syl φ F Walks G P
19 12 a1i φ iEdg S = I B E
20 15 a1i φ Vtx S = V
21 1 2 3 4 5 6 7 18 9 10 11 19 13 14 20 16 wlkp1 φ H Walks S Q
22 2 eupthi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
23 9 eqcomi F = N
24 23 oveq2i 0 ..^ F = 0 ..^ N
25 f1oeq2 0 ..^ F = 0 ..^ N F : 0 ..^ F 1-1 onto dom I F : 0 ..^ N 1-1 onto dom I
26 24 25 ax-mp F : 0 ..^ F 1-1 onto dom I F : 0 ..^ N 1-1 onto dom I
27 26 biimpi F : 0 ..^ F 1-1 onto dom I F : 0 ..^ N 1-1 onto dom I
28 27 adantl F Walks G P F : 0 ..^ F 1-1 onto dom I F : 0 ..^ N 1-1 onto dom I
29 8 22 28 3syl φ F : 0 ..^ N 1-1 onto dom I
30 9 fvexi N V
31 f1osng N V B W N B : N 1-1 onto B
32 30 5 31 sylancr φ N B : N 1-1 onto B
33 dmsnopg E Edg G dom B E = B
34 10 33 syl φ dom B E = B
35 34 f1oeq3d φ N B : N 1-1 onto dom B E N B : N 1-1 onto B
36 32 35 mpbird φ N B : N 1-1 onto dom B E
37 fzodisjsn 0 ..^ N N =
38 37 a1i φ 0 ..^ N N =
39 34 ineq2d φ dom I dom B E = dom I B
40 disjsn dom I B = ¬ B dom I
41 7 40 sylibr φ dom I B =
42 39 41 eqtrd φ dom I dom B E =
43 f1oun F : 0 ..^ N 1-1 onto dom I N B : N 1-1 onto dom B E 0 ..^ N N = dom I dom B E = F N B : 0 ..^ N N 1-1 onto dom I dom B E
44 29 36 38 42 43 syl22anc φ F N B : 0 ..^ N N 1-1 onto dom I dom B E
45 13 a1i φ H = F N B
46 1 2 3 4 5 6 7 18 9 10 11 19 13 wlkp1lem2 φ H = N + 1
47 46 oveq2d φ 0 ..^ H = 0 ..^ N + 1
48 wlkcl F Walks G P F 0
49 9 eleq1i N 0 F 0
50 elnn0uz N 0 N 0
51 49 50 sylbb1 F 0 N 0
52 48 51 syl F Walks G P N 0
53 8 17 52 3syl φ N 0
54 fzosplitsn N 0 0 ..^ N + 1 = 0 ..^ N N
55 53 54 syl φ 0 ..^ N + 1 = 0 ..^ N N
56 47 55 eqtrd φ 0 ..^ H = 0 ..^ N N
57 dmun dom I B E = dom I dom B E
58 57 a1i φ dom I B E = dom I dom B E
59 45 56 58 f1oeq123d φ H : 0 ..^ H 1-1 onto dom I B E F N B : 0 ..^ N N 1-1 onto dom I dom B E
60 44 59 mpbird φ H : 0 ..^ H 1-1 onto dom I B E
61 12 eqcomi I B E = iEdg S
62 61 iseupthf1o H EulerPaths S Q H Walks S Q H : 0 ..^ H 1-1 onto dom I B E
63 21 60 62 sylanbrc φ H EulerPaths S Q