Metamath Proof Explorer


Theorem ex-pr

Description: Example for df-pr . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-pr A11A2=1

Proof

Step Hyp Ref Expression
1 elpri A11A=1A=1
2 oveq1 A=1A2=12
3 sq1 12=1
4 2 3 eqtrdi A=1A2=1
5 oveq1 A=1A2=12
6 neg1sqe1 12=1
7 5 6 eqtrdi A=1A2=1
8 4 7 jaoi A=1A=1A2=1
9 1 8 syl A11A2=1