Metamath Proof Explorer


Theorem ex-pw

Description: Example for df-pw . Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ex-pw A=357𝒫A=357353757357

Proof

Step Hyp Ref Expression
1 pweq A=357𝒫A=𝒫357
2 qdass 3535=3535
3 qdassr 73757357=73757357
4 2 3 uneq12i 353573757357=353573757357
5 pwtp 𝒫357=353573757357
6 df-tp 357=357
7 6 uneq2i 357=357
8 unass 357=357
9 7 8 eqtr4i 357=357
10 tpass 35=35
11 10 uneq1i 357=357
12 9 11 eqtr4i 357=357
13 unass 353757357=353757357
14 tpass 353757=353757
15 14 uneq1i 353757357=353757357
16 df-tp 3757357=3757357
17 16 uneq2i 353757357=353757357
18 13 15 17 3eqtr4i 353757357=353757357
19 12 18 uneq12i 357353757357=357353757357
20 un4 353573757357=357353757357
21 19 20 eqtr4i 357353757357=353573757357
22 4 5 21 3eqtr4i 𝒫357=357353757357
23 1 22 eqtrdi A=357𝒫A=357353757357