Metamath Proof Explorer


Theorem ex-un

Description: Example for df-un . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-un 1318=138

Proof

Step Hyp Ref Expression
1 unass 1318=1318
2 snsspr1 113
3 ssequn2 113131=13
4 2 3 mpbi 131=13
5 4 uneq1i 1318=138
6 1 5 eqtr3i 1318=138
7 df-pr 18=18
8 7 uneq2i 1318=1318
9 df-tp 138=138
10 6 8 9 3eqtr4i 1318=138