Metamath Proof Explorer


Theorem exexneq

Description: There exist two different sets. (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by BJ, 31-May-2019) Avoid ax-8 . (Revised by SN, 21-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) Use ax-pr instead of ax-pow . (Revised by BTernaryTau, 3-Dec-2024) Extract this result from the proof of dtru . (Revised by BJ, 2-Jan-2025)

Ref Expression
Assertion exexneq xy¬x=y

Proof

Step Hyp Ref Expression
1 exel xzzx
2 ax-nul yz¬zy
3 exdistrv xyzzxz¬zyxzzxyz¬zy
4 1 2 3 mpbir2an xyzzxz¬zy
5 ax9v1 x=yzxzy
6 5 eximdv x=yzzxzzy
7 df-ex zzy¬z¬zy
8 6 7 imbitrdi x=yzzx¬z¬zy
9 8 com12 zzxx=y¬z¬zy
10 9 con2d zzxz¬zy¬x=y
11 10 imp zzxz¬zy¬x=y
12 11 2eximi xyzzxz¬zyxy¬x=y
13 4 12 ax-mp xy¬x=y