Metamath Proof Explorer


Theorem exisym1

Description: A symmetry with E. .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion exisym1 x x x φ

Proof

Step Hyp Ref Expression
1 nfe1 x x φ
2 falim φ
3 2 eximi x x φ
4 1 3 exlimi x x x φ