Metamath Proof Explorer


Theorem exneq

Description: Given any set (the " y " in the statement), there exists a set not equal to it.

The same statement without disjoint variable condition is false, since we do not have E. x -. x = x . This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext , ax-sep , or ax-pow nor auxiliary logical axiom schemes ax-10 to ax-13 . See dtruALT for a shorter proof using more axioms, and dtruALT2 for a proof using ax-pow instead of ax-pr . (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by BJ, 31-May-2019) Avoid ax-8 . (Revised by SN, 21-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) Use ax-pr instead of ax-pow . (Revised by BTernaryTau, 3-Dec-2024) Extract this result from the proof of dtru . (Revised by BJ, 2-Jan-2025)

Ref Expression
Assertion exneq x¬x=y

Proof

Step Hyp Ref Expression
1 exexneq zw¬z=w
2 equeuclr w=yz=yz=w
3 2 con3d w=y¬z=w¬z=y
4 ax7v1 x=zx=yz=y
5 4 con3d x=z¬z=y¬x=y
6 5 spimevw ¬z=yx¬x=y
7 3 6 syl6 w=y¬z=wx¬x=y
8 ax7v1 x=wx=yw=y
9 8 con3d x=w¬w=y¬x=y
10 9 spimevw ¬w=yx¬x=y
11 10 a1d ¬w=y¬z=wx¬x=y
12 7 11 pm2.61i ¬z=wx¬x=y
13 12 exlimivv zw¬z=wx¬x=y
14 1 13 ax-mp x¬x=y