Metamath Proof Explorer


Theorem expandrexn

Description: Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandrexn.1 φ¬ψ
Assertion expandrexn xAφ¬xxAψ

Proof

Step Hyp Ref Expression
1 expandrexn.1 φ¬ψ
2 1 rexbii xAφxA¬ψ
3 df-rex xA¬ψxxA¬ψ
4 exanali xxA¬ψ¬xxAψ
5 2 3 4 3bitri xAφ¬xxAψ