Metamath Proof Explorer


Theorem f1o2d

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses f1od.1 F=xAC
f1o2d.2 φxACB
f1o2d.3 φyBDA
f1o2d.4 φxAyBx=Dy=C
Assertion f1o2d φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 f1od.1 F=xAC
2 f1o2d.2 φxACB
3 f1o2d.3 φyBDA
4 f1o2d.4 φxAyBx=Dy=C
5 1 2 3 4 f1ocnv2d φF:A1-1 ontoBF-1=yBD
6 5 simpld φF:A1-1 ontoB